Mathematical Terms and Identities

Thanks to Andy Nguyen and Julie Tibshirani for their advice on this handout.

This handout covers mathematical notation and identities that may be useful over the course of CS166. Feel free to refer to this handout for reference on a variety of topics. If you have any suggestions on how to improve this handout, please let us know!

Set Theory

The set N consists of all natural numbers. That is, $N = \{ 0, 1, 2, 3, \dots \}$

The set $\mathbb Z$ consists of all integers: $\mathbb Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

The set $\mathbb R$ consists of all real numbers.

The set \emptyset is the empty set consisting of no elements.

If *x* belongs to set *S*, we write $x \in S$. If *x* does not belong to *S*, we write $x \notin S$.

The union of two sets *S* $_1$ and *S*^{2} is denoted *S*^{1} ∪ *S*^{2}. Their intersection is denoted *S*^{1} ∩ *S*^{2}, difference is denoted $S_1 - S_2$ or $S_1 \setminus S_2$, and symmetric difference is denoted $S_1 \Delta S_2$.

If *S*^{1}</sub> is a subset of *S*², we write *S*¹ \subseteq *S*². If *S*¹ is a strict subset of *S*², we denote this by *S*¹ \subset *S*².</sup>

The power set of a set *S* (denoted $\mathcal{O}(S)$) is the set of all subsets of *S*.

The Cartesian product of two sets *S*¹ and *S*² is the set $S_1 \times S_2 = \{ (a, b) | a \in S_1 \land b \in S_2 \}$

First-Order Logic

The negations of the basic propositional connectives are as follows:

$$
\neg(\neg p) \equiv p
$$

\n
$$
\neg(p \land q) \equiv \neg p \lor \neg q
$$

\n
$$
\neg(p \lor q) \equiv \neg p \land \neg q
$$

\n
$$
\neg(p \rightarrow q) \equiv p \land \neg q
$$

\n
$$
\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
$$

The negations of the \exists and \forall quantifiers are as follows:

$$
\neg \forall x. \varphi \equiv \exists x. \neg \varphi
$$

$$
\neg \exists x. \varphi \equiv \forall x. \neg \varphi
$$

The statement "iff" abbreviates "if and only if."

Summations

The sum of the first *n* natural numbers $(0 + 1 + 2 + ... + n - 1)$ is given by

$$
\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}
$$

The sum of the first *n* terms of the arithmetic series $a, a + b, a + 2b, ..., a + (n-1)b$ is

$$
\sum_{i=0}^{n-1} (a+i b) = a \sum_{i=0}^{n-1} 1 + b \sum_{i=0}^{n-1} i = an + \frac{bn (n-1)}{2}
$$

The sum of the first *n* terms of the geometric series 1, *r*, r^2 , r^3 , ..., r^{n-1} is given by

$$
\sum_{i=0}^{n-1} r^i = \frac{r^n - 1}{r - 1}
$$

As a useful special case, when $r = 2$, we have

$$
\sum_{i=0}^{n-1} 2^i = 2^n - 1
$$

In the case that $|r| < 1$, the sum of all infinite terms of the geometric series is given by

$$
\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}
$$

The following summation often arises in the analysis of algorithms: when $|r| \leq 1$:

$$
\sum_{i=0}^{\infty} i \, r^i = \frac{r}{(1-r)^2}
$$

Inequalities

The following identities are useful for manipulating inequalities:

If
$$
A \leq B
$$
 and $B \leq C$, then $A \leq C$
\nIf $A \leq B$ and $C \geq 0$, then $CA \leq CB$
\nIf $A \leq B$ and $C \leq 0$, then $CA \geq CB$
\nIf $A \leq B$ and $C \leq D$, then $A + C \leq B + D$
\nIf $A, B \in \mathbb{Z}$, then $A \leq B$ iff $A \leq B + 1$

If *f* is any monotonically increasing function and $A \leq B$, then $f(A) \leq f(B)$

If *f* is any monotonically decreasing function and $A \leq B$, then $f(A) \geq f(B)$

The following inequalities are often useful in algorithmic analysis:

$$
e^{x} \ge 1 + x
$$

$$
\sqrt[n]{x_1 x_2 ... x_n} \le \frac{x_1 + x_2 + ... + x_n}{n}
$$

Floors and Ceilings

The floor function $\lfloor x \rfloor$ returns the largest integer less than or equal to *x*. The ceiling function $\lfloor x \rfloor$ returns the smallest integer greater than or equal to *x*. These functions obey the rules

$$
\lfloor x \rfloor \le x < \lfloor x \rfloor + 1 \quad \text{and} \quad \lfloor x \rfloor \in \mathbb{Z}
$$
\n
$$
\lceil x \rceil - 1 < x \le \lceil x \rceil \quad \text{and} \quad \lceil x \rceil \in \mathbb{Z}
$$

Additionally, $[x + n] = [x] + n$ and $[x + n] = [x] + n$ for any $n \in \mathbb{Z}$.

Asymptotic Notation

Let $f, g : \mathbb{N} \to \mathbb{N}$. Then

$$
f(n) = O(g(n)) \text{ iff } \exists no \in \mathbb{N}. \exists c \in \mathbb{R}. \forall n \in \mathbb{N}. (n \ge no \rightarrow f(n) \le cg(n))
$$

$$
f(n) = \Omega(g(n)) \text{ iff } \exists no \in \mathbb{N}. \exists c > 0 \in \mathbb{R}. \forall n \in \mathbb{N}. (n \ge no \rightarrow f(n) \ge cg(n))
$$

$$
f(n) = \Theta(g(n)) \text{ iff } f(n) = O(g(n)) \land f(n) = \Omega(g(n))
$$

To show that *f* and *g* are not asymptotically related, you can use these equivalent definitions:

$$
f(n) \neq O(g(n)) \text{ iff } \forall n_0 \in \mathbb{N}. \forall c \in \mathbb{R}. \exists n \in \mathbb{N}. (n \ge n_0 \land f(n) > cg(n))
$$
\n
$$
f(n) \neq \Omega(g(n)) \text{ iff } \forall n_0 \in \mathbb{N}. \forall c > 0 \in \mathbb{R}. \exists n \in \mathbb{N}. (n \ge n_0 \land f(n) < cg(n))
$$
\n
$$
f(n) \neq \Theta(g(n)) \text{ iff } f(n) \neq O(g(n)) \lor f(n) \neq \Omega(g(n))
$$

The following rules apply for O notation:

If
$$
f(n) = O(g(n))
$$
 and $g(n) = O(h(n))$, then $f(n) = O(h(n))$ (also Ω , Θ , o , ω)
If $f_1(n) = O(g(n))$ and $f_2(n) = O(g(n))$, then $f_1(n) + f_2(n) = O(g(n))$ (also Ω , Θ , o , ω)

If
$$
f_1(n) = O(g_1(n))
$$
 and $f_2(n) = O(g_2(n))$, then $f_1(n)f_2(n) = O(g_1(n)g_2(n))$ (also Ω , Θ , o , ω)

We can use o and ω notations to denote strict bounds on growth rates:

$$
f(n)=o(g(n))
$$
 iff $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$ $f(n)=o(g(n))$ iff $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$

Polynomials, exponents, and logarithms are related as follows:

 $\log_a n = \Theta(\log_b n)$ for any $a, b > 1$

Any polynomial of degree *k* with positive leading coefficient is $\Theta(n^k)$

$$
\log_b n = o(n^k) \text{ for any } k > 0
$$

$$
n^k = o(b^n) \text{ for any } b > 1
$$

$$
b^n = o(c^n) \text{ for any } 1 \le b \le c
$$

In a graph, *n* denotes the number of nodes $(|V|)$ and *m* denotes the number of edges $(|E|)$. In any graph, $m = O(n^2)$. In a dense graph, $m = O(n^2)$; a sparse graph is one where $m = o(n^2)$.

A graph algorithm runs in linear time if it runs in time $O(m + n)$.

The Master Theorem

If *a*, *b*, and *d* are constants, then the recurrence relation

$$
T(n) = aT(n / b) + O(n^d)
$$

solves as follows:

$$
T(n) = \begin{cases} O(n^d) & \text{if } log_b a < d \\ O(n^d log n) & \text{if } log_b a = d \\ O(n^{\log_b a}) & \text{if } log_b a > d \end{cases}
$$

Logarithms and Exponents

Logarithms and exponents are inverses of one another: $b^{\log_b x} = \log_b b^x = x$

The change-of-base formula for logarithms states that

$$
\log_b a = \frac{\log_c a}{\log_c b}
$$

Sums and differences of logarithms translate into logarithms of products and quotients:

 $\log_b xy = \log_b x + \log_b y$ $\log_b (x/y) = \log_b x - \log_b y$

The power rule for logarithms states

$$
\log_b x^y = y \log_b x
$$

In some cases, exponents may be interchanged:

$$
(a^b)^c = a^{bc} = (a^c)^b
$$

We can change the base of an exponent using the fact that logarithms and exponents are inverses:

$$
a^c = b^{c \log_b a}
$$

Probability

If *E*¹ and *E*² are mutually exclusive events, then

$$
P(E_1) + P(E_2) = P(E_1 \cup E_2)
$$

For any events *E*₁, *E*₂, *E*₃, ..., including overlapping events, the union bound states that

$$
P\left(\bigcup_{i=1}^{\infty} E_i\right) \leq \sum_{i=1}^{\infty} P\left(E_i\right)
$$

The probability of *E* given *F* is denoted $P(E|F)$ and is given by

$$
P(E|F) = \frac{P(E \cap F)}{P(F)}
$$

The chain rule for conditional probability is

$$
P(E_n \cap E_{n-1} \cap ... \cap E_1) = P(E_n | E_{n-1} \cap ... \cap E_1) \cdot P(E_{n-1} | E_{n-2} \cap ... \cap E_1) \cdot ... \cdot P(E_1)
$$

Two events E_1 and E_2 are called independent iff

$$
P(E_1 \cap E_2) = P(E_1) P(E_2)
$$

For any event *E*, the complement of that event (denoted \overline{E}) represents the event that *E* does not occur. *E* and \overline{E} are mutually exclusive, and

$$
P(E) + P(\overline{E}) = 1
$$

Expected Value

The expected value of a discrete random variable *X* is defined as

$$
\mathrm{E}\left[X\right]=\sum_{i=0}^{\infty}\left(i\,P\left(X=i\right)\right)
$$

The expected value operator is linear: for any $a, b \in \mathbb{R}$ and any random variable X:

$$
E[aX + b] = aE[X] + b
$$

More generally, if $X_1, X_2, X_3, \ldots, X_n$ are any random variables, including dependent variables:

$$
\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbb{E}[X_{i}]
$$

If *X* and *Y* are independent random variables, then

$$
E[XY] = E[X]E[Y]
$$

Markov's inequality states that for any nonnegative random variable *X* and constant *c*, that

$$
P(X \ge c \operatorname{E}[X]) \le \frac{1}{c}
$$

Variance and Covariance

The variance of a random variable *X* is defined as

 $Var[X] = E[(X - E[X])^{2}]$

Equivalently:

$$
\text{Var}[X] = \text{E}[X^2] - \text{E}[X]^2
$$

Given two random variables *X* and *Y*, the covariance of *X* and *Y* is defined as

$$
Cov[X, Y] = E[(X - E[X])(Y - E[Y])]
$$

Equivalently:

$$
Cov[X, Y] = E[XY] - E[X]E[Y]
$$

Accordingly:

$$
Var[X] = Cov[X, X]
$$

Variance is not a linear operator:

$$
Var[aX + bY] = a^2 Var[X] + 2ab Cov[X, Y] + b^2 Var[Y]
$$

The variance of a summation of random variables, including dependent variables, can be simplified using the following rule:

$$
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right] + \sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right]
$$

If *X* and *Y* are independent random variables, then Cov[*X*, *Y*] = 0. However, if Cov[*X*, *Y*] = 0, it is not necessarily the case that *X* and *Y* are independent.

Chebyshev's inequality states that for any random variable *X* with finite expected value and nonzero finite variance, that

$$
P(|X - \mathbf{E}[X]| \ge c \operatorname{Var}[X]) \le \frac{1}{c^2}
$$

Useful Probability Equalities and Inequalities

An indicator random variable is a random variable *X* where

$$
X = \begin{cases} 1 & \text{if event } F \text{ occurs} \\ 0 & \text{otherwise} \end{cases}
$$

For any indicator variable, $E[X] = P(F)$.

If X_1, X_2, \ldots, X_n are random variables, then

$$
P(\max\{X_1, X_2, ..., X_n\} \le k) = P(X_1 \le k \cap X_2 \le k \cap ... X_n \le k)
$$

$$
P(\min\{X_1, X_2, ..., X_n\} \ge k) = P(X_1 \ge k \cap X_2 \ge k \cap ... X_n \ge k)
$$

On expectation, repeatedly flipping a biased coin that comes up heads with probability *p* requires $1/p$ trials before the coin will come up heads.

Harmonic Numbers

The *n*th harmonic number, denoted H_n , is given by

$$
H_n = \sum_{i=1}^n \frac{1}{i}
$$

The harmonic numbers are close in value to $\ln n$: for any $n \ge 1$, we have

$$
\ln (n+1) \le H_n \le \ln n + 1
$$

And so $H_n = \Theta(\log n)$